Files
ai-code-assistant/pkg/llm/relevent_docs.go
Michael Powers 4b8b8132fd First Working Prototype
This application is a simple proof of concept demonstrating an agent capable of taking a prompt and generating a patch implementing code satisfying the prompt along with an accompanying unit test.
2025-04-20 07:47:41 -04:00

152 lines
3.7 KiB
Go

package llm
import (
"ai-code-assistant/pkg/database"
"context"
"fmt"
"github.com/cenkalti/backoff/v5"
"github.com/tmc/langchaingo/callbacks"
"github.com/tmc/langchaingo/schema"
"github.com/tmc/langchaingo/vectorstores"
"github.com/tmc/langchaingo/vectorstores/pgvector"
"log/slog"
"slices"
"strconv"
"strings"
"time"
)
type RelevantDocs struct {
CallbacksHandler callbacks.Handler
db *database.Database
llm *LLM
repoID string
size int
}
type FileChunkID struct {
Name string
ChunkID int
Start uint64
End uint64
Score float32
Doc *schema.Document
}
func NewGetRelevantDocs(db *database.Database, llm *LLM, repoID string, size int) *RelevantDocs {
return &RelevantDocs{
db: db,
llm: llm,
repoID: repoID,
size: size,
}
}
func (rd *RelevantDocs) GetRelevantFileChunks(ctx context.Context, query string) ([]*FileChunkID, error) {
conn, err := rd.db.DB(ctx)
if err != nil {
return nil, err
}
defer conn.Release()
vectorStore, err := pgvector.New(ctx,
pgvector.WithConn(conn),
pgvector.WithEmbedder(rd.llm.Embedder()),
pgvector.WithCollectionName("file_chunks"),
)
if err != nil {
return nil, err
}
retr := vectorstores.ToRetriever(vectorStore, rd.size, vectorstores.WithFilters(map[string]any{"type": "file_chunk", "repo_id": rd.repoID}))
retr.CallbacksHandler = rd.CallbacksHandler
docs, err := retr.GetRelevantDocuments(ctx, query)
if err != nil {
return nil, err
}
var chunks []*FileChunkID
for _, doc := range docs {
chunk := &FileChunkID{
Score: doc.Score,
}
if filePath, ok := doc.Metadata["file_path"].(string); ok {
chunk.Name = filePath
}
if chunkID, ok := doc.Metadata["chunk_id"].(string); ok {
id, _ := strconv.ParseInt(chunkID, 10, 64)
chunk.ChunkID = int(id)
}
if start, ok := doc.Metadata["start"].(string); ok {
chunk.Start, _ = strconv.ParseUint(start, 10, 64)
}
if end, ok := doc.Metadata["end"].(string); ok {
chunk.End, _ = strconv.ParseUint(end, 10, 64)
}
chunk.Doc = &doc
chunks = append(chunks, chunk)
}
return chunks, nil
}
func (rd *RelevantDocs) RankChunks(ctx context.Context, query string, chunks []*FileChunkID) error {
var didErr error
slices.SortFunc(chunks, func(a, b *FileChunkID) int {
if didErr != nil {
return 0
}
retr, err := rd.CompareChunks(ctx, query, a, b)
if err != nil {
didErr = err
}
return retr
})
return didErr
}
func (rd *RelevantDocs) CompareChunks(ctx context.Context, query string, chunk1, chunk2 *FileChunkID) (int, error) {
slog.Info("comparing chunks", "chunk_1_name", chunk1.Name, "chunk_1_id", chunk1.ChunkID, "chunk_2_name", chunk2.Name, "chunk_2_id", chunk2.ChunkID)
prompt := `Given the following two pieces of code pick the most relevant chunk to the task described below. Reply as a json object in the format {"chunk_id": "<chunk>"}. Only reply in JSON. Do not include any explanation or code.`
prompt += "\n\n" + query + "\n\n"
// Now that we have candidates we need to compare them against each other to find the most appropriate place to
// inject them.
prompt += "-- chunk_id: chunk_1 --\n"
prompt += chunk1.Doc.PageContent
prompt += "-- chunk_id: chunk_2 --\n"
prompt += chunk2.Doc.PageContent
op := func() (int, error) {
rsp, err := rd.llm.CodePrompt(ctx, prompt)
if err != nil {
return 0, err
}
if strings.Contains(rsp, "chunk_1") {
return -1, nil
} else if strings.Contains(rsp, "chunk_2") {
return 1, nil
}
return 0, fmt.Errorf("compare response didn't contain a chunk id: %s", rsp)
}
return backoff.Retry(ctx, op, backoff.WithBackOff(backoff.NewConstantBackOff(10*time.Millisecond)), backoff.WithMaxTries(1))
}