Files
ai-code-assistant/pkg/llm/relevent_docs.go

83 lines
1.8 KiB
Go

package llm
import (
"ai-code-assistant/pkg/database"
"context"
"github.com/tmc/langchaingo/callbacks"
"github.com/tmc/langchaingo/schema"
"github.com/tmc/langchaingo/vectorstores"
"strconv"
)
type RelevantDocs struct {
CallbacksHandler callbacks.Handler
db *database.Database
llm *LLM
repoID string
size int
}
type FileChunkID struct {
Name string
ChunkID int
Start uint64
End uint64
Score float32
Doc *schema.Document
}
func NewGetRelevantDocs(db *database.Database, llm *LLM, repoID string, size int) *RelevantDocs {
return &RelevantDocs{
db: db,
llm: llm,
repoID: repoID,
size: size,
}
}
func (rd *RelevantDocs) GetRelevantFileChunks(ctx context.Context, query string) ([]*FileChunkID, error) {
vectorStore, closeFunc, err := rd.db.GetVectorStore(ctx, rd.llm.Embedder())
if err != nil {
return nil, err
}
defer closeFunc()
retr := vectorstores.ToRetriever(vectorStore, rd.size, vectorstores.WithFilters(map[string]any{"type": "file_chunk", "repo_id": rd.repoID}))
retr.CallbacksHandler = rd.CallbacksHandler
docs, err := retr.GetRelevantDocuments(ctx, query)
if err != nil {
return nil, err
}
var chunks []*FileChunkID
for _, doc := range docs {
chunk := &FileChunkID{
Score: doc.Score,
}
if filePath, ok := doc.Metadata["file_path"].(string); ok {
chunk.Name = filePath
}
if chunkID, ok := doc.Metadata["chunk_id"].(string); ok {
id, _ := strconv.ParseInt(chunkID, 10, 64)
chunk.ChunkID = int(id)
}
if start, ok := doc.Metadata["start"].(string); ok {
chunk.Start, _ = strconv.ParseUint(start, 10, 64)
}
if end, ok := doc.Metadata["end"].(string); ok {
chunk.End, _ = strconv.ParseUint(end, 10, 64)
}
chunk.Doc = &doc
chunks = append(chunks, chunk)
}
return chunks, nil
}